Cotrimoxazole + an ACE inhibitor or ARB: sudden death

Hyperkalaemia.

Cotrimoxazole, an antibiotic that combines sulfamethoxazole and trimethoprim, can cause hyperkalaemia (1). Co-administration of cotrimoxazole with other drugs that can increase potassium levels, such as angiotensin-converting-enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs, alias sartans), can lead to severe hyperkalaemia with a risk of cardiac arrhythmia (1).

In late 2014, a Canadian team published the results of a complex case-control study involving 1110 case patients aged 66 years or older who were taking an ACE inhibitor or an ARB and who died suddenly within 7 days after receiving an antibiotic prescription for urinary tract infection. They were compared with controls with various similar characteristics, but who survived after taking one of the same antibiotics (1). The antibiotic in question was cotrimoxazole in 288 cases. The risk of death within 7 days was statistically significantly higher with cotrimoxazole than with amoxicillin (relative risk 1.83; 95% confidence interval 1.5 to 2.2). Amoxicillin was chosen as the comparator because it is not known to cause cardiac disorders or hyperkalaemia (2).

A second analysis focusing on the 14-day period after antibiotic prescription provided similar results (2).

Compared to the control group, there was an excess of three sudden deaths per 1000 cotrimoxazole prescriptions (2). Co-administration of two or more drugs known to cause hyperkalaemia can have fatal adverse effects. Practitioners should be aware of these drugs (including cotrimoxazole), avoid their co-administration, and carefully monitor serum potassium levels if co-administration is unavoidable.

Selected references from Prescrire’s literature search.
1. Health Canada “Reminyl ER (galantamine hydrobromide) - New safety information regarding the risk of serious skin reactions - For health professionals” 18 November 2014. healthycanadians.gc.ca: 2 pages.

Galantamine: serious skin reactions

● A decidedly bad drug.

In November 2014, the Canadian regulator Health Canada announced that serious skin reactions, namely Stevens-Johnson syndrome and acute generalised exanthematous pustulosis, had been reported in patients treated with galantamine, a cholinesterase inhibitor used in Alzheimer’s disease. Other less serious skin reactions were also reported (1).

The serious adverse effects of galantamine, including gastrointestinal, cardiac, neuropsychiatric and now cutaneous disorders, are disproportionate to its minimal and transient efficacy in Alzheimer’s disease.

Selected references from Prescrire’s literature search.

Topiramate: visual field defects

● Regular warning is needed.

Topiramate, a carbonic anhydrase inhibitor used in epilepsy, is known to have oculocutaneous adverse effects which include acute myopia and glaucoma (1). In late 2014, the Australian regulatory agency warned of a risk of visual field defects with topiramate (2), occurring in patients without elevated intracocular pressure (1). The visual field defects were reversible in most patients whose outcome was known (2).

For example, a 22-year-old man who had been taking topiramate 100 mg/day for 7 months for seizure control, and a 21-year-old woman who had been taking topiramate 150 mg/day for about a year for seizures, lost part of their peripheral vision; both patients had marked improvement in their visual field defects after topiramate discontinuation (3).

Other antiepileptic drugs, including pregabalin and vigabatrin, are also known to cause visual field defects (1). Topiramate has many adverse effects. Some, such as these visual field disorders, can be difficult to identify. As visual field defects can lead to accidents, patients must be informed of this risk during regular reassessment of the harm-benefit balance of their ongoing topiramate therapy.